

CADENA DE TRANSPORTE DE ELECTRONES & FOSFORILACION OXIDATIVA (A) (6)

CADENA DE TRANSPORTE DE ELECTRONES (CTE)

TAMBIÉN CONOCIDA COMO CADENA RESPIRATORIA

¿QUE ES?

Serie de proteínas y moléculas orgánicas que van **transportando electrones** (por medio de reacciones redox) que provienen **de coenzimas reducidas** (NADH y FADH2) **hasta llegar al oxígeno** (el aceptor final)

Del ciclo de Krebs!!, aunque también se genera un poco de NADH en la glucólisis

> Pero, ¿De dónde vienen el NADH y el FADH2?

- **COMPLEJO I** (NADH OXIDORREDUCTASA)
- **COMPLEJO II** (SUCCINATO REDUCTASA
- **UBIQUINONA** (COENZIMA Q)
- **COMPLEJO III** (Q-CITOCROMO C **OXIDORREDUCTASA)**
- CITOCROMO C
- **COMPLEJO IV** (CITOCROMO C OXIDASA)

¿COMO FUNCIONA? Citocromo C, Complejo III transfiere los transfiere los La **coenzima Q** pasa los electrones **del** complejo **l o** el **ll al** complejo **III** electrones al electrones al complejo IV citocromo c Complejo IV transfiere los **Complejo I** acepta electrones al Espacio intermembranal__+ electrones de oxígeno, Cit c (regenerando NAD+) y formando agua. se los pasa a la coenzima Q Complejo II, contiene la enzima del ciclo de FADH₂ FAD Matriz mitocondrial Krebs que produce NADH FADH2. Le da sus $2H^{+} + 1/2O_{2}$ electrones a la NAD+ H+ coenzima Q y se regenera FAD Sin oxígeno, nada de esto funcionaria

BOMBEO DE PROTONES,

Como puedes notar los complejos I, III y IV, también son bombas de protones (H+)...aprovechan el movimiento de epará mover H+ hacia afuera de la matriz

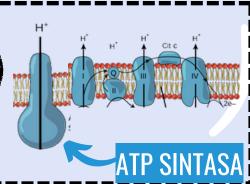
OXIGENO?

Para eso necesitan el oxígeno nuestras células!..para que sea el aceptor final de la CTE y eventualmente se genere ATP (energía) en la fosforilación **o**xidativa

QUE ES?

Proceso que permite sintetizar ATP como resultado de la transferencia de electrones en la CTE

¿QUIEN?


ATP SINTASA (COMPLEJO V)

¿DONDE?

En la membrana mitocondrial interna

COMO FUNCIONA?

Gradiente electroquímico de protones Región FO Región F1

ATP

Distribución desigual de H+ a ambos lados de la membrana

Los H+ regresan a la matriz a través de la **región FO** de la ATP sintasa (que funciona como un canal de protones)

Dicho movimiento de H+, estimula la **síntesis de ATP** en la **región F1** (encargada de unir el ADP + Pi, sintetizar ATP y luego liberarlo)

¿QUE OBTENEMOS?

La mayoría del ATP (energía) que la célula necesitará para realizar sus tareas

RESUMIENDO...

Se transfieren e- a la CTE

Movimiento de **e**- estimula bombeo de H+

Los **e**- al final son capturados por el **02**

H+ regresan a la matriz por la ATP sintasa

Lo que estimula la síntesis de **ATP**

Biodecofa | FUENTE Berg, J. M., Tymoczko, J. L., and Stryer, L. & Co. 2011.